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Abstract

Conversational tutoring systems (CTSs) offer learning experiences driven by natural
language interaction. They are known to promote high levels of cognitive engage-
ment and benefit learning outcomes, particularly in reasoning tasks. Nonetheless,
the time and cost required to author CTS content is a major obstacle to widespread
adoption. In this paper, we introduce a novel type of CTS that leverages the recent
advances in large language models (LLMs) in two ways: First, the system induces
a tutoring script automatically from a lesson text. Second, the system automates
the script orchestration via two LLM-based agents (Ruffle&Riley) with the roles of
a student and a professor in a learning-by-teaching format. The system allows a
free-form conversation that follows the ITS-typical outer-/inner-loop structure. In
an initial between-subject online user study (N = 100) comparing Ruffle&Riley to
simpler QA chatbots and reading activity, we found no significant differences in
post-test scores. Nonetheless, in the learning experience survey, Ruffle&Riley users
expressed higher ratings of understanding and remembering and further perceived
the offered support as more helpful and the conversation as coherent. Our study
provides insights for a new generation of scalable CTS technologies.

1 Introduction

Intelligent tutoring systems (ITSs) are a type of educational technology that provides millions of
learners worldwide with access to learning materials and affordable personalized instruction. ITSs
can, in certain cases, be as effective as human tutors [59, 32] and can play an important role in
mitigating the educational achievement gap [52, 25]. However, despite their potential, one major
obstacle to the widespread adoption of ITS technologies is the large costs associated with content
development. Depending on the depth of instructional design and available authoring tools, preparing
one hour of ITS content can take instructional designers hundreds of hours [3].

Conversational tutoring systems (CTSs) are a type of ITS that engages with learners in natural
language. Various studies have confirmed the benefits of CTSs, across multiple domains, particularly
on learning outcomes in reasoning tasks [46]. Still, many existing CTSs struggle to maintain coherent
free-form conversations and understand the learners’ responses due to limitations imposed by their
underlying natural language processing (NLP) techniques [19]. In this paper, we introduce a new
type of CTS that draws inspiration from design principles of earlier CTSs [44, 34] and that leverages
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Figure 1: UI of Ruffle&Riley. (a) Learners are asked to teach Ruffle (student agent) in a free-form
conversation and request help as needed from Riley (professor agent). Ruffle tries to guide the learner
to articulate the expectations in the tutoring script. (b) The learner can navigate the lesson material
during the conversation. (c) Ruffle encourages the learner to explain the content. (d) Riley responds
to a help request. (e) Riley detected a misconception and prompts the learner to revise their response.

the recent advances in large language models (LLMs) [65] to automate content authoring and to
orchestrate free-form conversational tutoring. Our main contributions include:

• Automated Induction of a Conversational Tutoring System from Text: We introduce a new type of
CTS that employs LLMs to generate a tutoring script automatically from a lesson text and that
further automates the script orchestration in a free-form conversation. In particular, we orchestrate
the conversation in a learning-by-teaching format via two conversational agents taking on the roles
of a student (Ruffle) and a professor (Riley). The conversation follows the prototypical ITS structure
by exhibiting an outer loop (problem sequencing) and an inner loop (feedback/assistance) [58].

• Findings from an Online User Study We report findings from a user study that evaluates the effects
of our LLM-induced CTS workflow on learning outcomes and user experience, comparing it to
simpler QA chatbots and reading activity. We discuss the strengths and limitations of our current
system, describe our plans for system refinements in response to user feedback, and provide
guidance for the design and evaluation of future LLM-based CTSs.

2 Related Work

2.1 Conversational Tutoring Systems

Dialog-based learning activities are known to lead to high levels of cognitive engagement [10], and
various studies have confirmed their benefits on learning outcomes (e.g., [12, 9]). This motivated
the integration of conversational activities into learning technologies. In their systematic review,
Paladines and Ramirez [46] categorized the design principles underlying existing CTSs into three
major categories: (i) expectation misconception tailoring (EMT) [15, 44], (ii) model-tracing (MT) [53,
51, 23]) and (iii) constraint-based modeling (CBM) [39, 60]. While all three frameworks can promote
learning, they require instructional designers to spend substantial effort configuring the systems
for each individual lesson and domain. Further, due to limitations of underlying NLP techniques,
many CTSs struggle to maintain coherent free-form conversations, answer learners’ questions, and
understand learners’ responses reliably [44]. In this context, this paper employs recent NLP advances
as the foundation for a novel type of LLM-driven CTSs that can orchestrate coherent free-form
adaptive dialogues and that can alleviate the burdens associated with content authoring.
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2.2 Content Authoring Tools

One major obstacle to the widespread adoption of CTSs and other types of ITSs is the complexity
and cost of content authoring [2, 19, 14]. For early ITSs, the development ratio (i.e., the number
of hours required to author one hour of instructional content) was estimated to vary between 200:1
and 300:1 [2]. Content authoring tools (CATs) [41] were developed to facilitate ITS creation, often
with an emphasis on making the process accessible to educators without programming background
(e.g., [29, 63, 3]). While a comprehensive survey of CATs is vastly beyond the scope of this paper–for
this, we refer to [14, 55]–here we focus on highlighting prior studies that illustrate the ability of
existing CATs to reduce authoring times. ASSISTment Builder [50] was developed to support content
authoring in a math ITS and enabled a development ratio of 40:1. For model tracing-based ITSs,
example tracing [3] has proven itself as an effective authoring technique that depending on the
context enables development ratios between 50:1 and 100:1. Recently, apprentice learner models
were evaluated as another authoring technique that in certain cases can be more efficient than example
tracing [61, 37]. In the context of CTSs, multiple CATs have been developed for AutoTutor [7], and
while we were not able to find concrete development ratio estimates, the authoring of CTS content is
still considered to be complex and labor intensive.

Alternative approaches explored the use of learner log data to enhance ITS components such as skill
models and hints (e.g., [4, 8, 5]) and machine learning-based techniques for questions and feedback
generation (e.g., [33, 22]). Recent advances in large language models (LLMs) [65] sparked a new
wave of research that explores ways in which LLM-based technologies can benefit learners [28].
Settings in which LLMs already have been found to be effective include question generation and
quality assessment [54, 42, 40, 26, 1], feedback generation [54, 27, 43, 35, 47, 66, 1], automated
grading [24, 6], and helping teachers reflect on their teaching [38, 36, 13]. What sets this paper
apart from the aforementioned works is that instead of focusing on the generation of individual
ITS components, we propose a system that can induce a complete ITS workflow that exhibits the
prototypical inner-/outer-loop structure [58] directly from a lesson text. Our work represents a step
towards LLM-driven ITS authoring tools that can induce entire workflows automatically from existing
learning materials and reduce system development times by an order of magnitude potentially.

3 System Architecture

Design Considerations

We approached the design of Ruffle&Riley with two specific goals in mind: (i) Facilitate an ITS
workflow that provides learners with a sequence of questions (outer loop) and meaningful feedback
during problem-solving (inner loop); (ii) Streamline the process of configuring the conversational
agents for different lesson materials. We reviewed existing CTSs and identified EMT [20] as a
design framework suitable for our objectives. EMT mimics teaching strategies employed by human
tutors [21] by associating each question with a list of expectations and anticipated misconceptions.
After presenting a question and receiving an initial user response, EMT-based CTSs provide inner-loop
support (goal (i)) by guiding the conversation via a range of dialogue moves to correct misconceptions
and to help the learner articulate the expectations before moving to the next question (outer loop).
While EMT-based CTSs have been shown to be effective in various domains [44], they need to be
configured in a labor-intensive process that requires instructional designers to define a tutoring script
that specifies questions, expectations, misconceptions and other information for each lesson [7]. For
us, tutoring scripts are attractive as a standardized format for CTS configuration (goal (ii)).

An overview of our user interface, together with descriptions of its key elements, is provided by
Figure 1. Inspired by the success of learning-by-teaching activities [16, 18, 34], we decided to
orchestrate the conversation in a learning-by-teaching format via two conversational agents taking on
the roles of a student (Ruffle) and a professor (Riley). While our design is similar to some CTSs in
the AutoTutor family [44] that follow a trialogue format, one notable difference is that Riley solely
serves as an assistant to the learner by offering assistance and correcting misconceptions. Riley never
communicates with Ruffle directly. In the following, we describe the system architecture underlying
Ruffle&Riley in more detail (Figure 2).

Tutoring Script Generation Ruffle&Riley is capable of generating a tutoring script fully automati-
cally from a lesson text by leveraging GPT4 [45]. This involves a 4-step process: (i) A list of review
questions is generated from the lesson text; (ii) For each question, a solution is generated based on
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Figure 2: System architecture. Ruffle&Riley generates a tutoring script automatically from a lesson
text by executing three separate prompts that induce questions, solutions and expectations for the
EMT-based dialog. During the learning process, the script is orchestrated via two LLM-based
conversational agents in a free-form dialog that follows the ITS-typical outer-/inner-loop structure.

the question and lesson texts; (iii) For each question, a list of expectations is generated based on
question and solution texts; (iv) The final tutoring script is compiled as a list of questions together
with related expectations. The first three steps are implemented via three separate prompts written
in a way general enough to support a wide range of lesson materials. Our tutoring scripts do not
attempt to anticipate misconceptions learners might exhibit. Instead, we rely on GPT4’s ability to
detect factually incorrect information in the learner’s responses during the active teaching process.

Conversation Orchestration EMT-based CTSs require the definition of dialog moves and conversa-
tional turn management to facilitate coherent conversations, which in itself is a complex authoring
process [7]. Ruffle&Riley automates the tutoring script orchestration by including descriptions of
desirable properties of EMT-based conversations into the agents’ prompts and captures the user’s
state solely via the chat log. The student agent receives the tutoring script as part of its prompt and is
instructed to let the user explain the individual questions and to ask follow-ups until all expectations
are covered. Ruffle reflects on user responses to show understanding, provides encouragement to the
user, and keeps the conversation on topic. In parallel, Riley’s prompt contains the lesson text and
instructions to provide feedback to user responses, to offer relevant information after help requests,
and to prompt the user to revise their response after detecting incorrect information. Both agents are
instructed to keep the conversation positive and encouraging and to not refer to information outside
the tutoring script/lesson text. The turn manager coordinates the system’s queries to GPT4.

4 System Evaluation

4.1 Experimental Design

The recruitment and study process was approved by the Institutional Review Board (IRB).

Content To evaluate the efficacy of the system, we adapted a Biology lesson on organelles of
eukaryotic cells from the OpenStax project [11]. We selected this lesson because we expected
participants to have low prior familiarity with the material to ensure a learning process. Nevertheless,
the lesson text is designed to be accessible to a general audience.

Conditions Similar to prior work [59, 31], we construct conditions to compare the efficacy of our
EMT-based CTS to reading alone and to a QA chatbot with limited dialog. In two distinct conditions,
we equip the QA chatbot with content generated by a human teacher and an LLM to study potential
differences.

• Reading: Participants study the material without receiving additional support.

• Teacher QA (TQA): Participants study the material and can answer review questions presented by
the chatbot. After submitting an answer, participants receive brief feedback about the correctness
of their answer and a sample solution. Questions/answers are designed by a teacher.

• LLM QA (LQA): Same as TQA, but questions/answers are generated by the LLM (Section 3).
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Table 1: Learning performance across different conditions.

Table 2: Learning experience across different conditions. The symbol "*" represents p < 0.05. The
symbol "-" represents that this aspect was not asked in the corresponding condition.

• Ruffle&Riley (R&R): Participants study the material while being supported by the two conversa-
tional agents (Section 3). The system is equipped with the same questions as LQA.

Surveys/Questionnaires We evaluate system efficacy from two perspectives: learning performance
and learning experience. Performance is captured via a multiple-choice post-test after the learning
session, which consists of five questions written by a biology teacher recruited via Upwork [57] and
two questions from OpenStax [11]. The learning experience is captured via a 7-point Likert scale
questionnaire that queries participants’ perception of engagement, intrusiveness, and helpfulness of
the agents, based on previous work [48]. To ensure data quality, we employed two attention checks
and one question asking participants whether they looked up test answers online. Further, we included
a demographic questionnaire to understand participants’ age, gender, and educational background.

Participants We recruited participants located in the US who were fluent in English and had at least
a high-school (HS) degree via Prolific [49]. Participants were randomly assigned to the conditions
and were free to drop out at any point in the study. Overall, 100 participants completed the task. As
shown in Table 1, 30 participants finished the reading condition, 17 finished TQA, 23 finished LQA,
and 30 finished R&R. The imbalance is due to the random condition assignments and dropouts.

Hypotheses We explore the following hypotheses. H1: Learning Outcomes: R&R achieves higher
post-test scores than the baseline conditions (H1a); There is no significant difference between TQA
and LQA (H1b). H2: Learning experience: R&R achieves higher ratings than the baseline conditions
in terms of engagement, helpfulness in understanding, remembering, interruption, coherence, support
received, and enjoyment (H2a); There are no significant differences between TQA and LQA (H2b).

4.2 Results and Analysis

After filtering participants who failed any of the attention check questions, or who did not rate
“strongly disagree” when asked whether they looked up test answers, we were left with 58 (male: 33,
female: 21, other: 4) out of the 100 participants (15 in reading, 7 in TQA, 15 in LQA, and 21 in
R&R). The age distribution is 18-15 (8), 26-35 (20), 36-45 (18), 46-55 (9), over 55 (3). The degree
distribution is: HS or Equiv. (22) Bachelor’s/Prof. Degree (25), Master’s or Higher (11).

Learning Performance The post-test consists of seven questions, each worth one point. The mean
and standard error in post-test scores for each condition is provided by Table 1. A one-way ANOVA
did not detect significant differences in post-test scores among the four conditions. Therefore, we
find support for H1b but not for H1a. Even though not significantly different, we observed that
participants in R&R achieved somewhat higher scores (5.19± 0.25) than in TQA (4.14± 0.83).

Learning Experience Table 2 shows participants’ learning experience and chatbot interaction ratings.
We tested for significance (p < 0.05) via one-way ANOVA, followed by Bonferroni post-hoc analysis.
We found no significant differences in self-reported engagement levels between the four conditions.
However, among the three chatbot conditions, R&R was rated as significantly more helpful in aiding
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participants in understanding, remembering the lesson and providing the support needed to learn.
Further, R&R participants expressed more enjoyment than TQA and LQA participants. In addition,
participants found R&R provided a significantly more coherent conversation than LQA. Interestingly,
even though we expected R&R to be rated as more interrupting, we found no significant differences
in perceived interruption among the three chatbot conditions. Therefore, H2a is partially supported.
In addition, there were no significant differences detected between LQA and TQA among the aspects
of the learning experience. Thus, we cannot reject H2b.

Evaluation of Conversations in R&R We analyzed chat and behavior log data in R&R. First, based
on logged responses and scrolling events, we found that participants taught Ruffle with different
strategies. Some participants learned the lesson driven by the questions asked by Ruffle (10 out of
21) and focused on the conversation immediately after entering the learning session before reading
the whole lesson text. Other participants read the text first before starting the conversation. Second,
on average, participants submitted 1.33± 1.74 help requests. Third, the mean learning time in each
condition is: reading (4 mins), TQA (11 mins), LQA (12 mins), and R&R (18 mins).

5 Discussion and Limitations

Here, we discuss lessons learned, future directions, and limitations.

Extending the System Evaluation While our evaluation showed that Ruffle&Riley can improve
various learning experience metrics, we were not able to detect significant improvements in learning
outcomes. Our post-test featured recall-based multiple-choice questions, which are a shallow form
of knowledge assessment. Our observations align with prior research that found that reading and
conversational tutoring can lead to similar outcomes in recall-based test formats [20]. As a next
step, we want to revise our post-test format and employ fill-in-the-blank and essay questions to
assess deeper understanding. We also want to evaluate knowledge retention over time and gauge the
system’s ability to facilitate learning in other domains (e.g., psychology, and business).

Refining the Instructional Design Some users engaged in the conversational workflow before
reading the lesson text and focused exclusively on the questions presented by the agents. This can
cause users to miss important information that falls outside the scope of the tutoring script. In future
evaluations, we want to orchestrate the learning activity in a more structured way, either by requiring
the users read the lesson text first or by interweaving lesson material with conversation [62]. Further,
we observed that conversational learning activities require substantially more time than reading. This
motivates us to explore more time-efficient CTS workflows [31] in future research.

Human-in-the-loop Capabilities The present study leverages an LLM to automatically generate
a tutoring script from a lesson text and automates its orchestration in a free-form dialog via two
conversational agents. While our study showcases the impressive capabilities of state-of-the-art
NLP technologies, we think that it is crucial to move towards extending the system architecture
with human-in-the-loop capabilities [64, 56]. We want to enable general educational practitioners
to get involved in the instruction design process. For example, teachers might want to include their
own review questions or insert expectations for students’ answers into the conversation script or
alternatively choose among different candidates that the LLM can provide to them. Including human
domain experts in the design process can further improve trustworthiness and content quality.

Limitations Ruffle&Riley is still in an early stage of development, and the present study is subject to
several limitations. First, the system was evaluated in an online user study conducted via Prolific [49]
with adult participants exhibiting diverse demographics (i.e., age and education). Current findings
might not generalize to K12 or college students. Before evaluating Ruffle&Riley with younger
learners in institutional settings, we need to certify safe and trustworthy system behavior [17].
Relatedly, we need to verify the factual correctness of the information that surfaces during the
conversations [28]. While we instructed the GPT4-based agents to only refer to information that
occurs in the lesson text, and we have not observed incorrect information during system testing and
data analysis, a systematic evaluation is fundamental. Another limitation is that participants only took
part in a single learning session. Users might require some time to get used to the workflow.
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6 Conclusion

In 2019, the team around AutoTutor [7] reflected on the labor-intensive process in which conversa-
tional tutoring systems are created and hinted towards the possibility that, sometime in the future, one
might be able to generate tutoring scripts fully automatically. Now, in 2023, we have reached a point
where the capabilities of available NLP technologies enable us to make this vision become a reality.
In the coming years, generative-AI-based content authoring tools are likely to allow researchers and
educators to focus their limited time more on questions of effective instructional design and ITS
architecture and less on system implementation. This might accelerate the evaluation of instructional
design principles [30], leading to improvements in ITSs and to general insights for learning science.
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